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Abstract
It is argued that the entanglement entropy in condensed matter systems can be
used to study different aspects of quantum gravity, such as universality of the
low-energy physics, the renormalization group behaviour of the gravitational
coupling and the statistical meaning of the Bekenstein–Hawking entropy.

PACS numbers: 04.60.−m, 03.70.+k, 03.65.Ud, 05.50.+q

1. Introduction

As was first suggested in [1], condensed matter systems enable one to model quantum effects
in external gravitational fields. Under certain conditions, sound waves in liquid helium or in
Bose–Einstein condensates behave as scalar excitations, propagating in an effective curved
background with a metric similar to that near a black hole horizon (see, e.g., [2] and references
therein).

In this paper, we argue that condensed matter systems can also be used to study other
aspects of quantum gravity. Our suggestion is based on the properties of entanglement entropy.
Entanglement entropy is introduced as the measure of information loss about quantum states
which cannot be observed. The states can be located in a region of space separated from the
observable states by a boundary B.

Consider, for instance, a lattice of spins being in a quantum state characterized by a density
matrix ρ̂. Suppose that the lattice is divided into regions A and B with a common boundary
B. The entanglement between the two regions can be described by the reduced density matrix
ρ̂B = TrA ρ̂, where the trace is taken over the states of spin operators at the lattice sites in
one of the regions (for instance, the region A). The entanglement entropy is defined as the
von Neumann entropy in the region B as S = −TrB ρ̂B ln ρ̂B . Standard arguments show that
S does not depend on whether the reduced matrix is obtained by tracing over the states in A

or B.
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A simple but non-trivial example is the entanglement entropy for a block of spins in the
Ising model. The Hamiltonian of the model is

H =
N∑

i=1

(
σx

i σ x
i+1 + λσ z

i

)
, (1)

where N is the number of spins and σx
i , σ z

i are the Pauli matrices. The parameter λ is the
strength of the external magnetic field. At zero temperature, the Ising chain has a second-order
phase transition at the critical value λ = 1.

The entanglement entropy can be investigated for the ground state when the chain is
separated into two blocks of contiguous spins of equal sizes N/2. Suppose that λ is fixed and
N varies (N is much larger than the correlation length). The results show that there are two
regimes [3]. In the off-critical regime, λ �= 1 and |λ − 1| � 1, the entropy at large N reaches
the saturation value S(N, λ) = − 1

6 log2 |λ−1|. In the critical regime, λ = 1, the entropy does
not reach saturation and behaves at large N as S(N, λ) � 1

6 log2 N/2.
The explanation of these results (as will be shown in the next section) is based on the fact

that in the continuous limit, N → ∞, near the critical point the Ising model corresponds to a
quantum field theory (QFT) with a fermion field whose mass (the inverse correlation length)
is monotonically related to |λ − 1|. In the critical regime, the mass vanishes and one has a
fermionic conformal field theory (CFT) with the total central charge c = 1.

Higher dimensional condensed matter systems have similar properties. There are a
number of systems which are described near a critical point by relativistic QFTs with massive
fields. For those systems the entanglement entropy (in spaces having number of dimensions
larger than 1) is a geometrical quantity. If B is a simple plane or a sphere, the entropy is
proportional to the area of B [4]. This property follows from the fact that field excitations in
A and B are correlated only on the boundary.

Our arguments relating the entanglement entropy and gravitational physics are based on
the observation that higher dimensional quantum many-body systems near a critical point set
an example of ‘induced gravity theories’. As in Sakharov’s approach [5], the corresponding
Einstein action is entirely induced by quantum effects of field degrees of freedom. Let us
emphasize that, because we are interested only in the behaviour of the Newton coupling, we
do not need to introduce any metric (or its analogue) in the condensed matter system. To
determine the coupling, it is sufficient to study the response of the effective action in a flat
space to the introduction of a conical singularity. This is equivalent to the definition of the
gravitational coupling in these theories as the entanglement entropy per unit area. Hence, the
coupling is a computable quantity which can be studied by analytical and numerical methods;
and from this analysis one can get new insights into quantum gravity phenomena.

2. Geometrical derivation of the entanglement entropy

For further discussion, it is instructive to recall how the results for the 1D Ising chain can
be obtained from geometrical properties of S(N, λ). The definition of the entropy can be
rewritten by using the formula

S = − lim
n→1

∂

∂n
TrB ρ̂n

B. (2)

Near the critical point the system is described by a field theory with field variables φ. The
density matrix ρ̂B in the configuration representation depends on variables φB on the interval
B. Suppose that the system is in a state with the temperature T. (The result for the ground state
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1/T

3/T

Figure 1. The upper picture shows the cylinder with the circumference length T −1 and a cut along
the axis. The space Mβ is schematically drawn for n = 3 on the lower picture. It is obtained
by gluing along the cuts of three copies of the cylinder. The circumference length of the right
boundary of Mβ is 3T −1. The cuts meet at the point C which is a conical singularity.

entanglement can be recovered in the limit T → 0.) Then the matrix elements of ρ̂B can be
described in terms of the Euclidean path integral

〈φ′
B |ρ̂B |φB〉 = N−1

∫
[Dφ̃] e−IE [φB,φ′

B ]. (3)

N is a normalization coefficient introduced to satisfy the condition TrB ρ̂B = 1. The classical
action IE(φB, φ′

B) is defined on a Euclidean space with a compact time. In two dimensions,
this space is a cylinder with the circumference length T −1 and a cut parallel to its axis; the
length of the cut is equal to the length of the interval B (see the upper picture in figure 1). The
integration in (3) implies that φ̃ take values φB and φ′

B on the different sides of the cut. If n is
positive and integer, the matrix elements of the operator ρ̂n

B can be represented by integral (3)
where field variables are defined on an n-sheeted surface with the same cut. The cut disappears
when one takes the trace.

Thus, the field variables in the path integral representation of quantity TrB ρ̂n
B are defined

on a manifold Mβ , where β ≡ 2πn. This manifold is locally flat but has a non-trivial
topology. The important property is that Mβ has a singularity at the point (or generally at a
hyper-surface) where all n cuts meet. In two dimensions this is a conical singularity because
a unit circle around it has a circumference length larger than 2π .

One can rewrite (2) in another form following from (3):

S = lim
β→2π

(
β

∂

∂β
− 1

)
�(β), (4)

where �(β) is the effective action defined as

e−�(β) =
∫

[Dφ̃] e−IE(β) (5)

(�(2π) = − lnN ). Functional IE(β) is the classical action on Mβ . After computing �(β)

one can replace the discrete parameter β with a continuous one and use (4). This can be done
even if Mβ itself cannot be defined at an arbitrary β.

The expression of the entanglement entropy in terms of the effective action has a number
of advantages. It enables one to reformulate the problem in geometrical language and use
powerful methods of a spectral geometry to study the structure of the ultraviolet divergences of
�(β) and S. The ultraviolet divergent part, �div(β), depends non-trivially on β. For instance,
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in the dimensional regularization in two dimensions �div(β) contains the term a1(β)/(4πε),
where ε is a regularization parameter and

a1(β) = π

3

(
2π

β
− β

2π

)
+

1

3

∫
∂Mβ

k. (6)

Here k is the extrinsic curvature of the boundary ∂Mβ of Mβ . Equation (6) holds for free
scalar or spinor fields.

The non-trivial dependence on β in the first term in the rhs of (6) is a direct consequence
of the conical singularity. In the spectral geometry theory, a1(β) is one of the coefficients of
the asymptotic expansion of the trace of the corresponding heat-kernel operator [6].

For β = 2πn in two dimensions, Mβ looks like ‘pants’ with n legs (see the lower picture
in figure 1). Its boundary consists of n circles with length T −1 each and a circle of length
nT −1. However, because the extrinsic curvature k for each boundary is zero, the coefficient
a1(β) is determined only by the conical singularity.

In the critical regime when the theory is a CFT the dependence on the size of the cylinder
L (provided the size of the subsystem is L/2 and T goes to zero) is entirely determined from the
anomalous scaling: the renormalized actions for systems of sizes L and L0 differ by the term
− a1(β)

4π
ln L/L0. It is this term which results in the scaling law of the entanglement entropy in

the critical Ising model. This can be easily seen with the help of (4) if one puts L ∼ N .
In the off-critical regime, m � T ,m � L−1, the effective action is approximated by the

following leading terms:

�(β) � − σβ

16π2

L
2

T
+

a1(β)

8π
ln

m2


2
, (7)

where 
 is the ultraviolet cutoff, σ = +1 for scalars and −2 for spinor fields. The first term
in the rhs of (7) is a ‘vacuum energy’ proportional to the volume of Mβ . Substitution of (7)
into (4) yields S � − 1

6 ln m � − 1
6 ln |λ − 1|, in accord with numerical results. The non-zero

value of S is again ensured by the conical singularity.

3. Relation to gravity

The reason why the entanglement entropy is related to the gravity theory is because the conical
space possesses a curvature concentrated on the tip. For the tip of the cone at x = 0, the
curvature is the distribution R = 2(2π − β)δ(2)(x), see, e.g., [7]. By taking into account this
fact and (6), one can represent the effective action (7) in the limit β close to 2π as

�(β) = 1

4G(2)(m)

(∫
Mβ

(R + 2λ(2)) +
∫

∂Mβ

2k

)
. (8)

This is a two-dimensional analogue of the Einstein–Hilbert action with some induced
cosmological, λ(2), and Newton, G(2), couplings. We are interested here in the Newton
coupling which is defined as

1

G(2)(m)
= 1

12π
ln


2

m2
= 1

π
S. (9)

Therefore, by studying the entanglement entropy in a condensed matter system in the near-
critical regime one studies the properties of the induced gravitational coupling in an effective
gravity theory. The coupling is determined by the response of the effective action to the conical
singularity.

Certainly, (8) cannot be considered the true gravity theory: the curvature term in the action
in combination with the boundary term yields a topological invariant. The situation changes
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in higher dimensions. Consider, for instance, a 3D quantum theory on a cubic lattice (with
the edge size L) which in the continuum limit is described by a free-scalar QFT in the (3+1)-
dimensional spacetime. The result for the entropy in this theory can be obtained from formulae
derived in two dimensions [8]. Suppose that the entanglement entropy is calculated when the
lattice is divided into two regions with the quadrangle boundary B of the size L by L. The field
variables φ(x, y) depend on two types of coordinates. Coordinates yi (−L/2 � yi � L/2,
i = 1, 2) correspond to directions along the boundary, while xα, α = 0, 1, are the time and
a direction orthogonal to B. A four-dimensional field is equivalent to an infinite tower of 2D
fields φp(x) defined by a Fourier transform in y coordinates. The index p is a momentum of
the field along B. If φ(x, y) has the mass m the 2-field φp(x) has the mass m(p) =

√
p2 + m2,

p = |p|. The effective action of the theory �(β) is the sum of the actions of all p-modes.
Each 2D action at β close to 2π is given by (8) with coupling G(2)(p) defined in formula (9)
where m is replaced by m(p). It is not difficult to see that �(β) takes the correct form of the
Einstein–Hilbert action. The action contains the integral of the four-dimensional curvature
which is

∫ (4)
R = 2(2π −β)A, where A = L2 is the area of B. The coefficient by this integral

yields the induced Newton constant G:

1

G
=

∫ 


0

2p dp

G(2)(m(p))
= 
2

12π
+

m2

12π
ln

m2


2
. (10)

By applying (4), one finds the entanglement entropy S = A/(4G). We rewrite this relation as

G−1 ≡ 4S

A
(11)

and use it as a definition of the Newton coupling in the induced gravity theory corresponding
to a given condensed matter system. The definition is applicable to the case when B is a simple
plane (which we assume). Equation (11) enables one to study a number of problems, some of
which will be discussed in section 4.

There are different higher dimensional many-body systems which can be used as analogue
models of the induced gravity theories. An important subclass among them is higher
dimensional Ising models which are interesting for several reasons. First, in the critical
regime, Ising models are equivalent to scalar field theories with self-interactions. Second, the
behaviour of most known second-order phase transitions is equivalent at the critical point to
a three-dimensional (3D) Ising model. Third, there are indications that Ising models can be
represented as theories of random (hyper) surfaces. In particular, as was conjectured in [9]
near the point of the second-order phase transition the 3D Ising model might be equivalent to
a non-critical fermionic string theory.

The two-dimensional Ising model is exactly solvable. The reduced density matrix
for the ground state entanglement can be diagonalized, which significantly simplifies the
computations. In higher dimensions exactly solvable Ising models are not known. Thus, one
has to develop numerical methods for computing the entanglement entropy.

4. Applications

4.1. RG flow of the gravitational coupling

The knowledge of the entanglement entropy as a function of parameters of the theory can be
used to find the renormalization group (RG) evolution of the induced Newton constant (11).
This information is important for understanding the behaviour of gravitational interactions at
different scales.
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Consider as an illustration a one-dimensional spin chain. It has a compact momentum
space with the radius p̄ = 2π/a determined by the lattice spacing a. The Wilson RG
transformation implies integration over high-energy modes with momenta in the interval
t−1p̄ � p � p̄ (with t > 1) followed by rescaling, p to p′ = tp. As a result, one gets a theory
with larger masses. For the Ising model (1) with λ �= 1 this is equivalent to increasing the
difference |λ − 1|. The RG transformation drives the theory away from the ultraviolet fixed
point λ = 1.

The RG evolution of the entanglement entropy for the Ising model is known precisely
[10]. It is in accord with the general property that the entanglement entropy in unitary theories
should not increase along the RG flow because RG transformations eliminate the contribution
of the high-energy modes.

The fact that the entropy is not increasing does not imply the same property for the
induced coupling G−1 defined by (11). The coupling behaves as the density of the entropy,
G−1(t) = tD−2S(t), where D is the number of spacetime dimensions and S(t) is a function
which has the same RG evolution as the entropy. Thus, non-decreasing of S does not contradict
the fact that gravitational interactions get weaker in the infrared region.

4.2. The scaling hypothesis

The scaling hypothesis in classical critical phenomena asserts that the physics is determined
by large-scale fluctuations which do not depend on the underlying microscopical details. For
instance, in a magnet at temperature T in an external field h which undergoes a second-
order phase transition, the physics is explained by the large domains of aligned spins. The
microscopic atomic scale does not enter into thermodynamical relations near the critical
point T = Tc. Non-analytic dependence of the physical quantities on |T − Tc| is entirely
determined by a ‘singular part’ of free-energy density fsing. This part has a universal scaling
fsing(t, h) = ξ−(D−1)f±(hξ−dh), where ξ ∼ |T − Tc|−ν is the correlation length and dh is
the scaling dimension of h. Functions f± are universal in the sense that they coincide with
different systems from the same class.

It was conjectured in [11] that near a critical point, in analogy with the classical
scaling, the entanglement entropy per unit area has a ‘singular part’ ssing(g, h, T ) =
ξ−(D−2)s±(hξ−dh , T ξ−z), where ξ = |g − gc|−ν is the correlation length, g is a parameter
driving the phase transition at gc, h is an external field with scaling dimension dh and T is the
temperature. The universality conjecture means that s± are universal functions. Note that ssing

is not the total entropy density. There exists a piece in the entropy depending on the lattice
spacing a, which as was suggested in [11] is analytic in g.

Clearly, in the context of the induced gravity, the universality hypothesis is a statement
about the gravitational coupling.

4.3. The problem of the black hole entropy

Studying entanglement in quantum critical phenomena might be helpful for understanding
the microscopical origin of the Bekenstein–Hawking entropy of black holes. If the gravity
is entirely induced by some underlying degrees of freedom, the entropy of a black hole
can be related to the entanglement between observable states and states hidden inside the
horizon (see, e.g., [8, 12] and references therein). Understanding the relation between the two
entropies in the framework of a local relativistic quantum field theory is plagued by the
problem of ultraviolet divergences. The definition of the induced Newton coupling requires
either introduction of the ultraviolet cutoff or working with a special class of ultraviolet finite
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theories with non-minimal couplings to the curvature in the Lagrangians. The presence of
non-minimal couplings makes statistical interpretation of the Bekenstein–Hawking entropy
a more difficult task. In the suggested condensed matter analogues such problems do not
exist. The fundamental microscopical theory is not a field theory. It has a natural cutoff, a
lattice spacing, and the corresponding gravitational coupling is a microscopically computable
quantity. Also the non-minimal couplings do not occur at least for models described in the
critical regime by fermionic theories.

For the given analogue models, the entanglement entropy associated with the black hole
horizon is identical to the Bekenstein–Hawking entropy. Therefore, one has a chance to learn
what the real degrees of freedom of a black hole are. Are they spin variables, non-critical
stings (as for the 3D Ising model) or something else? One can also ask other questions. For
instance, do near-horizon symmetries [13] control the entropy counting in these models?

To summarize, we have shown that near-critical condensed matter systems can be
considered as analogues of induced gravity theories and used to address a number of questions.
The suggested approach avoids the main difficulty of gravity analogues [1, 2] introduced to
study the Hawking radiation. This difficulty is the absence of the diffeomorphism invariance
and the dynamical Einstein-like equations for the effective metric. In the new approach, the
gravitational coupling can be defined as the entanglement entropy per unit area. Neither
the effective metric nor its dynamics is needed. The coupling is defined from the response of
the effective action to the conical singularity. It is a computable quantity which can be studied
by analytical and numerical methods.
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